
THE DETERMINATION OF ACTIVITY COEFFICIENTS FROM 
THE POTENTIALS OF CONCENTRATION CELLS 

WITH TRANSFERENCE 

D. A. MAcINNES AND ALFRED S .  BROWN 
Laboratories of the RockejeEZer Inst i tute  for Medical Research, N e w  York ,  N e w  York 

Received October 21, 1956 

The usefulness of Lewis’ conceptions of “activity” and “activity coeffi- 
cients” in the theory of solutions is now generally conceded. As is well 
known, activities replace concentrations in thermodynamic equations 
involving the law of mass action if the components are not perfect solutes. 
Also the variation of an activity coefficient of a component of a solution 
from unity is a convenient measure of the departure of that component 
from the behavior of a perfect solute. A very considerable progress was 
made when these empirical functions were expressed, by Debye and 
Huckel, in terms of the electrical state of the solution. According to their 
theory the variation, from unity, of the activity coefficients of the ion 
constituents of electrolytes is due to attractions and repulsions of oppositely 
and like charged particles. Charged particles will tend to arrange them- 
selves, if undisturbed, in regular geometrical order, giving a “lattice struc- 
ture.” Such an arrangement will, however, be continuously disordered 
by the thermal vibration of the particles. The result of these two opposing 
effects is that the Gibbs free energies of the ion constituents will be smaller 
than if the ions were uncharged, and the activity coefficients will, accord- 
ingly, be less than unity. Although there remains little doubt that the 
fundamental assumptions of Debye and Huckel are correct, there is a 
comparatively small amount of experimental data suitable for testing the 
theory, particularly in the region of low ion concentrations where their 
equations are expected to be valid. In dilute solutions complicating 
secondary effects, not considered in the theory, are most likely to be absent. 

Of the various methods available for obtaining activity coefficients, the 
one depending upon the determination of the potentials of concentration 
cells is, when applicable, the most convenient and accurate. In  contrast 
to freezing points or boiling points, the measurements are isothermal, and 
can be carried out a t  any temperature a t  which the existence of the cell is 
physically possible. The concentration cell procedure is superior to these 
and the vapor pressure method, in that the precision of the measurements 
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does not decrease rapidly as the concentrations of the solutions are lowered. 
There is, however, a distinct limitation to the electromotive force method, 
in that reversible electrodes are necessary for the ion constituents of the 
solute electrolyte. Thus, for sodium chloride solutions, a concentration 
cell without liquid junction, of which the following is a typical example 

Ag; AgC1, NaCl(C1) ; NaHg, - NaHg,; NaCl(CZ), AgCl; Ag (Cell A) 

involves electrodes reversible to the chloride and sodium ion constituents, 
in this case silver-silver chloride and sodium amalgam electrodes. Amal- 
gam electrodes, however, require elaborate experimental technique and 
are limited in the Concentration range in which they can be used. 

Although it is rarely possible to find electrodes for both ions of a binary 
electrolyte which are reversible and at the same time convenient to work 
with experimentally, suitable electrodes for one of the ion constituents are 
much more frequently available. With such electrodes, concentration cells 
with liquid junctions can be set up. A cell of this type is the following 

(Cell B) Ag; AgCl, NaCl(Cl) : NaCl(Cz), AgCl; Ag 

Another cell of this kind is 

Ag; AgN03(Ci) : AgNOa(C2); Ag (Cell C) 

For silver nitrate as solute a concentration cell without liquid junction is 
impossible, since no electrode reversible to the nitrate ion is available. 
The experimental work so far carried out has been on cells B and C at  
25°C. 

If the transference number t is constant in the concentration range C1 to 
Cz the activity ratio can be computed from the equation: 

2tRT a1 E = - -  log - 
F az 

in which E is the potential of a cell of the type represented by B and C, and 
a1 and az are the mean ion activities a t  the concentrations C1 and CZ. In 
general, however, the transference number is a function of the concentra- 
tion, in which case equation 1 must be replaced by 

E = - 2 F 1 1 1 t d l o g a  

the integration being from solution I to solution 11. 

tions. If the cell 
The validity of equation 2 will be evident from the foIIowing considera- 

(Cell D) Ag; AgC1, NaCl(p) : NaCl(p + dp), AgCl; Ag 
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is set up its potential d E  is 

-F dE  tNadp 

Here NaCl ( p )  represents a solution of sodium chloride, the chemical poten- 
tial of the solute of which is p, and t~~ is the number of equivalents per 
faraday transferred from the higher to the lower concentration during the 
reversible operation of the cell. It will be noted that the operation of cell 
D is, differentially and reversibly, the opposite of the usual process for 
determining the Hittorf transference number tNa. If now a second cell 
is made as follows 

Ag; AgC1, NaCl(p + dp) : NaCl(p + dp + dp’), AgCl; Ag (Cell E) 
its potential dE’ can be obtained from 

-FdEf = thsdpt 

in which tk, may have a slightly different value from tNa. If cells D and E 
are put in series the potentials of the electrodes in contact with solutions of 
like chemical potential will cancel, and the resulting cell will have the same 
potential as one having the composition 

Ag, AgCI, NaCl(p), NaCl(p + dp + dp’), AgC1, Ag (Cell F) 
Such a series of cells could, of course, be continued indefinitely, from which 
it follows that 

the last term following from the conventional definition of mean ion 
activity. 

Although equation 2, or the differential form of it, has been used to ob- 
tain transference numbers from E.M.F. data by MacInnes and Beattie, 
Jones and Dole, Jones and Bradshaw (4, 5,  S), and others, it does not ap- 
pear to have been used for the purpose of obtaining activity coefficients 
from E.M.F. and transference data. This is undoubtedly due to  the fact 
that determinations of transference numbers of adequate accuracy have 
not been available. The recent development, mainly in this laboratory, 
of the moving boundary method has, however, placed at  our disposal trans- 
ference numbers of high precision, measured over a range of concentra- 
tions (7, 10). Furthermore, it has been shown that transference numbers 
obtained by the moving boundary method agree with the more recent re- 
sults obtained by the Hittorf method (9). 

Values of the transference number of the chloride ion in sodium chloride 
at concentrations so low that direct measurement is inconvenient or im- 
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possible can be obtained by interpolating between the measured values and 
a limiting value at infhite dilution obtained with the aid of Kohlrausch’s 
law of independent ion mobilities. Using a method of extrapolation, the 
details of which are given elsewhere ( l l ) ,  which is in accord with the 
assumption that the Onsager (12) equation is valid for very dilute solutions 
of electrolytes, the same value for the limiting conductance of the chloride 
ion, hocl, was obtained from conductance and transference data on solu- 
tions of four chlorides. The limiting value of the transference number, 
t ~ 1 ,  is, of course, given by the ratio tg l  = AOC~/AOMCI in which A O M C ~  is 
the limiting conductance of the salt MCI. In addition Longsworth (6)  
has developed an equation, connecting the observed transference number 
with the concentration, which is useful for interpolation and which gives an 
extrapolation to i n h i t e  dilution in accord with the same assumptions. 
For the transference number of the nitrate ion in silver nitrate solutions 
the limiting value was obtained from Kohlrausch’s law, and a simple linear 
equation was found to hold for this and all the measured values. 

It should be recalled that the potential of a cell containing a liquid junc- 
tion of the type 

NaCl(C1) : NaCl(C2) 

where two solutions of the same electrolyte but at different concentrations 
meet at the boundary, is independent of the manner in which the junction 
is made, and has a definite constant value. This has been tested by Scatch- 
ard and Buehrer (13), who, as a matter of fact, found a very small change 
of potential (of the order of 0.03 mv.) when a flowing junction between 7.3 
and 0.1 N hydrochloric acid was allowed to become diffuse by stopping the 
flow. This slight effect they attribute to temperature gradients in the 
flowing boundary due to dilution caused by the relatively rapid diffusion. 
The potentials of the stationary boundaries were found to be constant with- 
in the small experimental error. 

EXPERIMENTAL 

For the determination of the potentials of concentration cells with 
liquid junction involving silver nitrate as solute (type C), the vessels shown 
in figure 1 were used. The more dilute solution filled the half-cell B and 
the more concentrated the half-cell A. The electrodes e and e‘ were formed 
from platinum wires plated with silver. The wires were sealed through 
narrow tubing, leaving about 1 cm. exposed. Electrical contact was made 
with mercury. Comparisons of the electrodes in the same silver nitrate 
solution showed variations of about ~ 0 . 0 2  mv. The data given in table 
1 were obtained in this laboratory by Dr. Philip G. Colin. Each reading 
for an electromotive force is the average of nine readings, using the various 
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possible combinations of electrodes in the two half-cells. After making 
the liquid junction by bringing the two solutions into contact, the cell 
reached its final potential immediately and held it with variations of the 

FIG. I 

order of 3tO.01 mv. for three hours or longer. The results are additive 
within the same limit of accuracy. Thus the potential of the combination 
0.01 N-0.002 N is 42.56 mv., whereas the sum of the potentials for the 
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combinations 0.01 N-0.005 N and 0.005 N-0.002 N is 42.55 mv. Meas- 
urements on cells of type C have been made by earlier workers. Their 
result8 are, however, very scattered and inaccurate. 

A considerable advance in experimental technique was made for the 
measurement of the concentration cells with liquid junction involving 
sodium chloride as solute (cells of type B). Since the improved technique 
has been described in a recent article (1) it will be merely outlined in this 
place. The apparatus used is shown in figure 2, in position for filling with 
the solutions. This filling is carried out without bringing the solutions 
into contact with air, through the tubes C and C'. Contact between the 
two solutions is produced by rotating the disk F, in a counter-clockwise 
direction, over the disk G. The potentials are then measured between 
the electrodes E and E'. For the methods for avoiding contaminations 
that would affect the results, and for correcting for the unavoidable small 
amounts of such contaminations, the reader is referred to the original 
article. Dr. Theodore Shedlovsky has devised a much simpler type of cell 
which will replace that shown in figure 2 in our future work, which will 
include measurements on most of the commoner electrolytes. A confirma- 
tory series of determinations of the potential of the silver nitrate concen- 
tration cells will shortly be made, using the modified technique. 

THE COMPUTATION O F  THE ACTIVITY COEFFICIENTS 

To compute activity coefficient ratios from cells with transference, i t  is 
necessary to  perform the indicated integration of equation 2 which may be 
written in the form: 

E = - -  2y  11' t (d log C + d logf) (3) 

in which C is the salt concentration, f the mean activity coefficient, and t 
the transference number of the ion to which the electrodes are not reversible. 
This integration has been carried out (a) by introducing E and t as empirical 
functions of C, and ( b )  by a method which is partly graphical. Method a 
cannot conveniently be used unless the empirical equations are relatively 
simple. For the case of cells involving silver nitrate, simple equations 
represent the data with accuracy, so that the method can be used as well 
as method b, which is general. The empirical equations for the sodium 
chloride data are unwieldy, so that method b only is available. 

Method a. The potentials of the silver nitrate concentration cells, given 
in table 1, may be expressed with an accuracy of f0 .02  mv. by an equation 
of the form 

(4) 
RT 
F E = 2to- log C + AC" + K 
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c1 

moles per liter 

0.10 
0.05 
0.05 
0.02 
0.01 
0.01 
0.005 

with the following numerical coefficients 

0.001E = 0.063373 log C + 0.02374C0*42 + 0.17279 (5 )  

In these equations l o  is the limiting value of the transference number of the 
nitrate ion, and E is the “summed up” potential for the concentration 
0.002 N to C. Thus E corresponding to 0.1 N consists of the sum of the 
potentials for the cells containing the solutions 0.002 N to 0.01 N and 0.01 
N to 0.1 N .  The measured values of E and the corresponding values 
from equation 5 are given in the second and third columns of table 2. 

TABLE 1 
T h e  potentials of silver nitrate concentration cells at 26°C. 

ca 

motes per liter 

0.05 
0.01 
0.02 
0.01 
0.005 
0.002 
0.002 

E o b s d .  

mv. 

0.00 
24.40 
42.56 
60.55 
83.59 

100.37 

D.M.F.  

Ees lod .  

~- 
mu. 

0.00 
24.40 
42.61 
60.53 
83.59 

100.39 

ma. 

16.78 
41.03 
23.04 
17.99 
18.15 
42.56 
24.40 

fobsd.(b) 

TABLE 2 
Computations of the activity coeficients of silver nitrate in aqueous solution at 86°C. 

foalod. 
EXTENDED 

THEORY 
C 

0.950 
0.922 
0.892 
0.858 
0.795 
0.733 

moles per 
liter 

0.002 ’ 

0.005 
0.01 
0.02 
0.05 
0.10 

0.950 
0.922 
0.894 
0.857 
0.794 
0.735 

f/fO BY 
METHOD a 

0.939 
0.911 
0.883 
0.848 
0.785 
0.725 

flf0.l BY 
METHOD b 

1.2952 
1.257, 
1,2166 
1.1708 
1 .os ,  
1 .oooo 

fobsd .  (3 

0.949 
0.922 
0,894 
0.857 
0.794 
0.734 

The transference number of the nitrate ion in silver nitrate can be 
expressed by the empirical equation 

t = t o  - bC 

t = 0.5357 - 0.039C 

as is shown in table 3, in which the measured transference numbers ob- 
tained in this laboratory by Dr. Irving A. Cowperthwaite are given in the 

(6) 

(7) 
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second column and the values from equation 7 are given in the third 
column. 

With the use of equations 4 and 6, equation 3 can be put in the form 

(8) 
2toR' dC - nACn-l dC = 2R' d log Cf = 

2.303(to - bC)C ( t o  - bC) t 

where R' replaces RT/F. After expanding the second term on the right- 
hand side, integrating between the limits C and zero, introducing the 
numerical coefficients' from equations 5 and 7 and solving for log f/fo, 
we have the equation 

- lOgf/fo = log (1 - 0.07280C) + 0.3746(C0.42 + 0.021533C'.42 
+ 0.0008733C2.42) (9) 

Equation 9 cannot be used for extrapolation, since equation 5 is valid only 
over the concentration range investigated. Log f o  is an integration con- 

TABLE 3 
Transference numbers for the nitrate ion in silver nitrate solutions 

moles per liter 

0.10 
0.05  
0.02 
0 .01  
0.00 

0.5318 
0.5336 
0.5348 
0.5352 

10.53571 

0.5318 
0.5337 
0.5349 
0.5353 
0.5357 

stant which would be zero if the equation held to C = 0. The ratios 
f/fo for silver nitrate, given in the fourth column of table 2, were obtained 
from equation 9. 

Method b. For our data on sodium chloride concentration cells and 
transference numbers, given in the first three columns of table 4 (l), the 
following more general method devised by Dr. L. G. Longsworth for com- 
puting the activity coefficients was used. The transference number, 
tN., at  any concentration may be expressed by 

t N s  = ti + At 

tl being the value a t  some reference concentration, in this case 0.1 N .  
the potentials are stated in millivolts at  25OC. equation 3 becomes 

If 

(10) d E  = - 2 X 59.144(ti + At)(d log C + d logf) 

Expanding and rearranging we obtain 

- dE/118.29 ti = d log C + At/t,*d log C + d logf + At/tr.d logf (11) 
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Integrating and again rearranging yields 

- 1 11’ At d log C - - /I1 At d A log f (12) tl tl I 

Of the four terms on the right-hand side of this equation, the first two are 
computed directly from the data. The third term is obtained by graphical 
integration, using a plot of At values against values of log C. The fourth 
term, of relatively small magnitude, is obtained by graphical integration, 
using preliminary values of A logf, obtained by adding the first three terms 

TABLE 4 
The activity coeficients of sodium chloride at 86°C. 

NORMALITY c 

0.0049849 
0.006978s 
0.009967 0 

0.0199344 
0.02989 7 

0.039855 
0.04981 0 

0.059762 
0,079655 
0.099533 

C.M.F. I N  MV. 

-56.450 
-49.907 
-43.02 o 
-29.801 
-22.181 
-16.81s 
- 12.695 

-9.317 
-4,056 

0 

TRANSFER- 
ENCE NO. 

“a 

0,3930 
0.3925 
0.3918 
0.3902 
0.3891 
0.3883 
0.3876 
0.3870 
0.3861 
0.3855 

rOQ ACTIVITY 
2OEFFICIENT 

RATIO, 
A LOQ/ 

-0.0758 
-0.0705 
-0.0640 
-0.0489 
-0.0382 
-0.0300 
-0.0230 
-0.0176 
-0.0079 

0 

ACTIVITY COEFFICIENT0 

0.9283 
0.9171 
0.9034 
0.8726 
0.8513 
0.8354 
0,8221 
0.8119 
0,7940 

(0.7796) 

f (computed 
from equs- 

tion 13) 

0.9281 
0.9171 
0.9036 
0.8726 
0.8515 
0.8354 
0.8221 
0.8110 
0.7925 
0.7779 

f (computed 
from equa- 

tion 17)  

0.9281 
0.9169 
0.9034 
0.8724 
0.8515 
0.8354 
0.82% 
0.8115 
0.7938 
0.7796 

of the equation, and plotting against At. This process could be repeated 
with more accurate values of A log f, but a further approximation was not 
found to be necessary. The resulting values of A log f for sodium chloride 
are given in the fourth column of table 4. 

In the fifth column of table 2 values of jlf0.1 (i.e,, the antilogs of A logf) 
are given. These were obtained by method b from the data on silver 
nitrate. 

THE INTERPRETATION OF THE ACTIVITY COEFFICIENT RATIOS 

To provide a basis for the activity coefficients, f, such that they will 
approach unity as the concentration is progressively decreased, use can be 
made of the familiar equation of the Debye-Huckel theory 

- log f = CY.\/ET/(l + /3.\/C) (13) 
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in which CY depends upon the temperature, the dielectric constant, and 
universal constants, and B depends upon these factors, and, in addition, 
upon the distances of closest approach of the ions. This equation is valid 
for dilute solutions containing relatively large ions. To use this equation 
13 with the data in table 4 the following procedure was found to be con- 
venient. We may set 

IOgf = A - Alogf (14) 
in which A is a constant. Combining equations 13 and 14 and rearranging 
terms 

A logf - C Y ~ C  = A + /3(A - A I o g n d C  (15) 
Thus, through the range of validity of equation 13 a plot of A log f - C Y ~ G  
against ( A  - A 1ogf )dC should be a straight line with intercept A and 
slope 8. The constant A is obtained by means of a short series of approxi- 
mations. Using a value of a = 0.5056 a t  25OC., this computation yields a 
value of A of -0.1081 and of p of 1.463. This value of ,!3 corresponds to a 
distance of closest approach of 4.45 A.,  which is sufficiently large for the 
higher terms of the extended theory of Gronwall, La Mer, and Sandved (2) 
to be negligible. 

In columns 5 and 6 of table 4 are given the observed activity coefficients 
and those computed from equation 13. It will be observed that the 
agreement of the corresponding values is excellent up to a concentration of 
0.04 or 0.05, above which there is a progressive deviation. For solutions of 
higher concentrations Huckel (3) has proposed an equation of the form 

l o g f =  - + D C  
1 + @4C 

in which D is an additional constant. Using this extra term, agreement 
between observed and computed values of the activity coefficient is ob- 
tained as high as the measurements were made, which was up to 0.1 molar. 
This can be seen by comparing the values of columns 5 and 7 of table 4. 
The differences in the observed and computed values are of the order of 
0.0002. The more complete equation connecting the activity coefficient 
and the concentration is 

l o g f =  - 0*5056a + 0.047 C 
1 + 1 . 3 1 5 4 c  

However, as can be seen, to attain this agreement between the observed 
and computed values of the activity coefficient it was necessary t o  change 
the value of f3 from 1.463 to 1.315. Equally good agreement between 
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observed and computed activity coefficients may be obtained with a 
range of values of the constants @ and D, a decrease in one of them com- 
pensating for an increase of the other. It is evident that the Huckel equa- 
tion is useful for expressing the data, a t  least in this case, although it is in 
large measure empirical. The activity coefficients for sodium chloride and 
their relation to  the limiting law 

- log f = adi? 
are shown in figure 3, where the values of log f are plotted as ordinates 
against the square root of the concentration as abscissas. 

Vconcentration 

FIG. 3 

For the data on silver nitrate equation 13 will express the data with a 
distance of closest approach of 2.0 A. However, if that parameter is as 
small as this preliminary value would indicate, the computations should 
be made with the more complete theory in the form given it by Gronwall, 
La Mer, and Sandved (2)) who have extended it to include higher terms 
omitted in the mathematical development in its earlier form. For the 
details of the calculation the reader is referred to the original article. 
With the aid of that theory a value of f o  or f0.l necessary for converting 
the activity ratios, obtained by methods a and b, respectively, was ob- 
tained. The resulting activity coefficients are given in columns 6 and 7 
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of table 2. It will be observed that the two methods of computation 
yield practically the same results. Column 8 contains the activity coeffi- 
cients calculated directly from the extended theory, using a distance of 
closest approach of 2.3 .& The agreement between the nbserved and 
computed values is excellent. The activity coefficients for silver nitrate 
are also plotted in figure 3. 

SUMMARY 

Using a method involving the determination of the potentials of con- 
centration cells with liquid junctions, and of transference numbers, accu- 
rate values of the activity coefficients of sodium chloride and of silver 
nitrate in aqueous solution at 25OC. have been determined. The method 
requires a type of electrode reversible to only one of the constituents of a 
binary electrolyte, and thus greatly extends the range of electrolytes for 
which the concentration cell method is available for obtaining the thermo- 
dynamic properties of the substances in solution. 

The data on the activity coefficients for sodium chloride follow the 
Debye-Huckel relations in their original form up to  a concentration of 0.05 
normal, with a distance of closest approach of 4.45 A. For the activity 
coefficients of silver nitrate, however, the extended theory of Gronwall, 
La Mer, and Sandved should be used. The extended theory accurately 
expresses the data for that substance if the distance of closest approach of 
2.3 8. is used. 
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DISCUSSION 
DR. HILDEBRAND: There used to be a great deal of discussion about 

different methods of setting up a liquid-liquid junction; will you tell us 
the present answer to the question? 

DR. MACINNES: I can give a decisive answer only for the type of junc- 
These, it will 

NaCI(CI) : NaCl(C2) (Cell A) 

in which two solutions of the same electrolyte meet at the boundary. I t  has 
been found by repeated and careful experiments that potentials of cells 
involving such liquid junctions are quite independent of the way they are 
made. One is that the 
mixed solutions must not reach the electrodes. The other is that large 
heat effects due to mixing of the solutions at the junction must not occur. 
We have found that a junction, initially sharp, can be stirred without 
changing the cell potential. Also we have found that the potential of the 
cell : 

(Cell B) 

tion involved in the cells of the kind discussed in our paper. 
be recalled, are of the form: 

There are two qualifications to this statement. 

Ag; AgCI, NaCl (0.1 M )  : NaCl (0.04 M ) ,  AgCl; Ag 

was equal within 0.001 mv. to the cell: 

Ag; AgCI, NaCl (0.1 M )  : NaCl (0.2 M )  : NaCl (0.04 M ) ,  AgCl; Ag 
(Cell C) 

Here it is seen that in cell C a strong solution is interposed between the 
two solutions in cell B, but that all three solutions are of the same electro- 
lyte. 

Theoretically this constancy is due to the fact that the transference 
number t and the activity a in equation 2 are both functions of the concen- 
tration C. From the point of view of the liquid junction, all computations 
of the potentials of such junctions start from the equation (for uni-univalent 
electrolytes) : 

I 

in which Ej is the liquid junction potential, t i  and ai are, respectively, the 
transference number and the (hypothetical) single ion activity of the ion 
species i. The summation is over all the ion species present and the 
integration is from values of the variables corresponding to one of the 
solutions to  those in the other. For liquid junctions of type A, t i  and ai 
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are single valued functions of the concentration C for all mixtures of the 
two solutions in contact, and the integration will therefore be independent 
of the spatial arrangement of these mixtures. This is not true of junctions 
of the type 

NaCl : HC1 (D) 
for instance. Here the transference numbers and activities will depend 
upon the way that the two solutions are brought together. This theo- 
retical deduction is also supported by experiment. The potentials of cells 
involving junctions of type D are dependent upon whether they are sharp, 
as with a flowing junction, or whether appreciable diffusion has taken place. 


